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Ordered Collections: Four Ways in PVS

I sequence [nat -> T]

I bounded array [below(N) -> T]

I finite sequence
[# length: nat, seq: [below[length] -> T] #]

I list datatype

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

lists were covered in Paul Miner’s abstract data type
lecture
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Sequence

PVS provides a sequence (i.e., unbounded array) as follows:

T: TYPE

A1: FUNCTION [nat -> T]

A2: ARRAY [nat -> T]

A3: [nat -> T]

A4: sequence[T]

all of which are the same.
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Prelude sequences Theory

function meaning

nth(seq, n) nth element of the sequence
suffix(seq, n) sequence starting after the nth element
first(seq) first element
rest(seq) sequence excluding the first element
delete(n, seq) delete the nth element
insert(x, n, seq) insert x into seq at n
add(x, seq) insert x into the front of seq

I Quiz: How do we get to the prelude?
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Bounded Array1

An array with a fixed upper limit more closely matches
arrays in a programming languages.

below_arrays[N: nat, T: TYPE]: THEORY

BEGIN

below_array: TYPE = [below(N) -> T]

A: VAR below_array

x: VAR T

ii: VAR below(N)

in?(x,A): bool = (EXISTS ii: x = A(ii))

END below_arrays

I below is defined in PVS prelude
below(i: nat): TYPE = {s: nat | s < i}

I Bounded arrays can have a “maximum”. In general, a
sequence can only have a “least upper bound”

1Defined in NASA’s structures library
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Definition of imax rec (index of max)
max_real_array[N: posnat]: THEORY

BEGIN

IMPORTING below_arrays[N,real]

A: VAR below_array

jj: VAR below(N)

imax_rec(A,jj): RECURSIVE below(N) =

IF jj = 0 THEN 0

ELSE

LET IX = imax_rec(A,jj-1) IN

IF A(IX) <= A(jj) THEN jj ELSE IX ENDIF

ENDIF MEASURE jj

Recursive definitions require well-foundedness TCCs:
imax_rec_TCC1: OBLIGATION (FORALL (jj): jj = 0 IMPLIES 0 < N);

imax_rec_TCC2: OBLIGATION (FORALL (jj): NOT jj = 0

IMPLIES jj - 1 >= 0 AND jj - 1 < N);

imax_rec_TCC3: OBLIGATION (FORALL (A, jj): NOT jj = 0

IMPLIES jj - 1 < jj);

all of which are discharged with M-x tcp.
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Properties of imax rec

imax_rec_rng: LEMMA 0 <= imax_rec(A,jj) AND imax_rec(A,jj) <= jj

Proof:

(""

(INDUCT "jj" 1)

(("1" (FLATTEN) (SKOSIMP*) (EXPAND "imax_rec") (PROPAX))

("2" (SKOSIMP*) (EXPAND "imax_rec" +) (INST?) (LIFT-IF) (GROUND))))

imax_rec_lem: LEMMA j <= jj IMPLIES A(j) <= A(imax_rec(A,jj))

Proof:

(""

(INDUCT "jj" 1)

(("1" (FLATTEN) (SKOSIMP*) (EXPAND "imax_rec") (ASSERT))

("2" (SKOSIMP*) (EXPAND "imax_rec" +) (INST?) (LIFT-IF) (GROUND))))
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Definition of max(A) and Properties

imax(A): below(N) = imax_rec(A,N-1)

max(A): real = A(imax(A))

max_lem : LEMMA A(i) <= max(A)

imax_lem: LEMMA A(imax(A)) = max(A)

max_def : LEMMA A(i) <= max(A) AND in?(max(A),A)
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Array Concatenation

concat_arrays [n:nat, m:nat, T: TYPE]: THEORY

BEGIN

IMPORTING below_arrays

a_n: VAR below_array[n,T]

a_m: VAR below_array[m,T]

nm : VAR below(n+m)

o(a_n, a_m): below_array[n+m,T]

= (LAMBDA nm: IF nm < n THEN a_n(nm)

ELSE a_m(nm - n)

ENDIF)

I The function o overloads a function already defined in
the prelude.

I The return type of o depends upon the theory
parameters n and m. TCCs?

I o is an operator
I Either o(A,B) or A o B are syntactically valid
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Array Concatenation Properties

a_n: VAR below_array[n,T]

a_m: VAR below_array[m,T]

nm : VAR below(n+m)

concat_array_bot0: THEOREM m = 0 IMPLIES a_n o a_m = a_n

concat_array_top0: THEOREM n = 0 IMPLIES a_n o a_m = a_m

i: VAR below(n)

j: VAR {i: int | i >= n AND i < n+m}

concat_array_bot : THEOREM (a_n o a_m)(i) = a_n(i)

concat_array_top : THEOREM (a_n o a_m)(j) = a_m(j-n)



Collection Types

Jeffrey Maddalon

Ordered
Collections

Sequence

Bounded Array

Array Operations

Finite Sequences

Unordered
Collections

Sets

Proving with Sets

Sets in Type Theory

Choose

Finite Sets

Finite Set Operations

Bags

Array Extraction

Given an array A = [a 0, a 1, a 2, a 3, . . ., a (N-1)], we want
the elements A^(m,n) = [a\_m, ..., a\_n]

caret_arrays [N:nat, T: TYPE]: THEORY

BEGIN

IMPORTING below_arrays, empty_array_def

A: VAR below_array[N,T]

m, n: VAR nat

p: VAR [nat, below[N]]

empty_array: below_array[0,T]

^(A, p): below_array[LET (m, n) = p IN

IF m > n THEN 0

ELSE n - m + 1 ENDIF,T] =

LET (m, n) = p IN

IF m <= n THEN (LAMBDA (x: below[n-m+1]): A(x + m))

ELSE empty_array

ENDIF
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Properties of Array Extraction

caret_all : LEMMA N > 0 IMPLIES A^(0,N-1) = A

caret_ii_0: LEMMA FORALL (i: below(N)): (A^(i,i))(0) = A(i)

caret_elim: LEMMA

FORALL (j: below(N), i: upto(j), k: below(j-i+1)):

(A ^ (i, j))(k) = A(i+k)

I (A^(i,i))(0) extracts a single element
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Finite Sequences

finite_sequences [T: TYPE]: THEORY

BEGIN

finite_sequence: TYPE = [# length:nat, seq:[below[length] -> T] #]

finseq: TYPE = finite_sequence

fs, fs1, fs2, fs3: VAR finseq

m, n: VAR nat

empty_seq: finseq =

(# length := 0,

seq := (LAMBDA (x: below[0]): epsilon! (t:T): true) #)

finseq_appl(fs): [below[length(fs)] -> T] = fs‘seq;

I Don’t worry about epsilon for now, we will get to it later
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Finite Sequences (cont’d)

Concatenation operator

o(fs1, fs2): finseq =

LET lsum = fs1‘length + fs2‘length

IN (# length := lsum,

seq := (LAMBDA (n:below[lsum]):

IF n < fs1‘length

THEN fs1‘seq(n)

ELSE fs2‘seq(n-fs1‘length)

ENDIF) #);

Extraction operator

p: VAR [nat, nat]

^(fs, p): finseq =

LET (m, n) = p

IN IF m > n OR m >= fs‘length

THEN empty_seq

ELSE LET len = min(n - m + 1, fs‘length - m)

IN (# length := len,

seq := (LAMBDA (x: below[len]): fs‘seq(x + m)) #)

ENDIF
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Unordered Collections

These unordered collections are available in PVS

I Sets [T -> bool]

I Finite Sets [(is finite) -> bool]

I Bags (aka multisets) [T -> nat]

I Finite Bags [(is finite) -> nat]
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Definition of Sets

I Sets are defined in the PVS prelude (M-x vpf)

I Some of the operations defined on sets are:

PVS Name traditional notation or meaning

member ∈
union ∪
intersection ∩
difference \
add add element to a set
singleton constructs set with one element
subset? ⊆
strict subset? ⊂
emptyset ∅
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Sets in PVS (cont’d)

I It is important to bear in mind that a set is just a
predicate (i.e., a function into bool):

letters: TYPE = {a,b,c,d,e,f}
S: set[letters]

S is a function that maps each of the elements of the
domain to true or false. For example:

S(a) --> TRUE S(b) --> TRUE

S(c) --> FALSE S(d) --> TRUE

S(e) --> TRUE S(f) --> FALSE

I The above set is specified in PVS as follows:

(LAMBDA (x: letters): (x=a) OR (x=b) OR (x=d) OR (x=e))

I Alternatively, one could write:

{ x: letters | (x=a) OR (x=b) OR (x=d) OR (x=e) }

I But, there is no PVS set constructor {a, b, d , e}
I However, this form can be used for type construction

(see above)
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Sets Theory in Prelude

The sets[T: TYPE] theory is defined in the prelude:

sets [T: TYPE]: THEORY

BEGIN

set: TYPE = [T -> bool]

x, y: VAR T

a, b, c: VAR set

p: VAR PRED[T]

member(x, a): bool = a(x)

empty?(a): bool = (FORALL x: NOT member(x, a))

emptyset: set = {x | false}

nonempty?(a): bool = NOT empty?(a)

fullset: set = {x | true}

subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

strict_subset?(a, b): bool = subset?(a, b) & a /= b
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Sets Theory in Prelude (cont’d)

union(a, b): set = {x | member(x, a) OR member(x, b)}

intersection(a, b): set = {x | member(x, a) AND member(x, b)}

disjoint?(a, b): bool = empty?(intersection(a, b))

difference(a, b): set = {x | member(x, a) AND NOT member(x, b)}

singleton(x): set = {y | y = x}

add(x, a): set = {y | x = y OR member(y, a)}

remove(x, a): set = {y | x /= y AND member(y, a)}

% A choice function for nonempty sets

choose(p: (nonempty?)): (p) = epsilon(p)

rest(a): set = IF empty?(a) THEN a ELSE remove(choose(a), a) ENDIF

END sets
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Properties Of These Set Operations

I Useful lemmas about sets and their operations are
available in the prelude in a theory named sets lemmas:

sets_lemmas [T: TYPE]: THEORY

BEGIN

a, b, c: VAR set[T]

x: VAR T

emptyset_is_empty?: LEMMA empty?(a) IFF a = emptyset

subset_transitive : LEMMA subset?(a, b) AND subset?(b, c)

IMPLIES subset?(a, c)

subset_emptyset : LEMMA subset?(emptyset, a)

union_commutative : LEMMA union(a, b) = union(b, a)

END

I Usually, one must include the parent type in a LEMMA
command (LEMMA "union commutative[nat])"

I Sometimes you can get away with

(REWRITE "union commutative)"

but not always!
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Set Union/Intersection Illustrated

x ∈ B ∪ C ≡ union(B, C)(x) = B(x) OR C(x)

x ∈ B ∩ C ≡ intersection(B, C)(x) = B(x) AND C(x)

Thus operations on sets can be reduced to propositional
formulas by set membership, i.e.,

I union(B, C) is a function

I union(B, C)(x) is a propositional formula!
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Proving with subset?

|-------

{1} subset?(B, C)

Rule? (expand "subset?")

|-------

{1} (FORALL (x: int): member(x, B) => member(x, C))

Rule? (SKOLEM*)

|-------

{1} member(x!1, B) => member(x!1, C)

Rule? (expand "member")

|-------

{1} (B(x!1) => C(x!1))

This can get a little tedious, is there another way?
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Interlude: Auto Rewriting

|-------

{1} factorial(5) > 100

Rule? (rewrite "factorial")

nn gets 5, Rewriting using factorial, matching in *,

|-------

{1} 5 * factorial(4) > 100

Rule? (auto-rewrite "factorial")

|-------

[1] 5 * factorial(4) > 100

Rule? (assert)

factorial rewrites factorial(1) to 1

factorial rewrites factorial(2) to 2

factorial rewrites factorial(3) to 6

factorial rewrites factorial(4) to 24

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.
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Set Auto Rewriting

The reduction can be facilitated through use of

(AUTO-REWRITE-THEORY "sets[T]")

which installs an entire theory as auto-rewrites, or

(INSTALL-REWRITES :DEFS T)

which installs all the definitions used directly or indirectly in
the original statement as auto-rewrite rules
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AUTO-REWRITE-THEORY

{-1} subset?(A!1, C!1)

|-------

{1} subset?(union(A!1, B!1), union(C!1, B!1))

Rule? (auto-rewrite-theory "sets[real]")

Rewriting relative to the theory: sets[real],

this simplifies to:

set_rewrite2 :

[-1] subset?(A!1, C!1)

|-------

[1] subset?(union(A!1, B!1), union(C!1, B!1))
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AUTO-REWRITE-THEORY (cont’d)

Rule? (ASSERT)

member rewrites member(x, A!1) to A!1(x)

member rewrites member(x, C!1) to C!1(x)

subset? rewrites subset?(A!1, C!1) to FORALL (x: real): A!1(x) => C!1(x)

member rewrites member(x, A!1) to A!1(x)

member rewrites member(x, B!1) to B!1(x)

union rewrites union(A!1, B!1)(x) to A!1(x) OR B!1(x)

member rewrites member(x, union(A!1, B!1)) to A!1(x) OR B!1(x)

member rewrites member(x, C!1) to C!1(x)

union rewrites union(C!1, B!1)(x) to C!1(x) OR B!1(x)

member rewrites member(x, union(C!1, B!1)) to C!1(x) OR B!1(x)

subset? rewrites subset?(union(A!1, B!1), union(C!1, B!1))

to FORALL (x: real): A!1(x) OR B!1(x) => C!1(x) OR B!1(x)

Simplifying, rewriting, and recording with decision procedures,

this simplifies to:

set_rewrite2 :

{-1} FORALL (x: real): A!1(x) => C!1(x)

|-------

{1} FORALL (x: real): A!1(x) OR B!1(x) => C!1(x) OR B!1(x)

an easily proved formula. How?
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Set Equality

I To prove that two sets are equal we must use function
extensionality:

f = g IFF ∀x : f (x) = g(x)

because sets are just functions into bools (i.e.,
predicates)

I The PVS command (APPLY-EXTENSIONALITY) will do the
trick

I The short cut is TAB E
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Set Equality: Example
A: set[posint] = { x: posint | (x=1) OR (x=2) OR (x=3) }

ill_ext: LEMMA A = add(1,add(2,singleton(3)))

ill_ext :

|-------

{1} A = add(1, add(2, singleton(3)))

Rule? (APPLY-EXTENSIONALITY :HIDE? T)

|-------

{1} A(x!1) = add(1, add(2, singleton(3)))(x!1)

Rule? (AUTO-REWRITE-THEORY "sets[posint]")

|-------

[1] A(x!1) = add(1, add(2, singleton(3)))(x!1)

Rule? (EXPAND "A")

|-------

{1} (((x!1 = 1) OR (x!1 = 2) OR (x!1 = 3))

= add(1, add(2, singleton(3)))(x!1))
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Set Equality: Example (cont’d)

Rule? (ASSERT)

singleton rewrites singleton(3)(x!1)

to x!1 = 3

member rewrites member(x!1, singleton(3))

to x!1 = 3

add rewrites add(2, singleton(3))(x!1)

to 2 = x!1 OR x!1 = 3

member rewrites member(x!1, add(2, singleton(3)))

to 2 = x!1 OR x!1 = 3

add rewrites add(1, add(2, singleton(3)))(x!1)

to 1 = x!1 OR 2 = x!1 OR x!1 = 3

Simplifying, rewriting, and recording with decision procedures,

|-------

{1} (((x!1 = 1) OR (x!1 = 2) OR (x!1 = 3)) =

(1 = x!1 OR 2 = x!1 OR x!1 = 3))

Rule? (GROUND)

No change on: (GROUND)

What happened here? Any suggestions?
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Set Equality: Example (cont’d)

Rule? (IFF)

Converting top level boolean equality into IFF form,

Converting equality to IFF,

this simplifies to:

ill_ext :

|-------

{1} (x!1 = 1) OR (x!1 = 2) OR (x!1 = 3) IFF

1 = x!1 OR 2 = x!1 OR x!1 = 3

Rule? (GROUND)

Applying propositional simplification and decision procedures,

Q.E.D.
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Big Warning

below_100: TYPE = { n: nat | n < 100 }

{ t: below_100 | t = 50 }

is not the same as

{ n: nat | n = 50 }

Why?
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Big Warning (cont’d)

Given

below_100: TYPE = { n: nat | n <= 100 }

We are really asking are these two sets equal?

{ t:below_100 | t = 50 } { n: nat | n = 50 }

So we are really asking are these two functions equal?

(LAMBDA (t:below_100): t = 50) (LAMBDA (n: nat): n = 50)

THE DOMAINS ARE NOT EQUAL!

I Because they do not have the same domains, the
APPLY-EXTENSIONALITY strategy cannot be used

I Even though in set theory semantics they represent the
same set.
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Thoughts About Sets in Type Theory

Type theory offers several advantages over set theory

I Avoids the classic paradoxes in an intuitive way.

I Type checking uncovers errors

I More “natural” for people used to (most) programming
languages

However, there are some disadvantages:
I Sets with the same elements but different domains are

different.
I The emptyset is not unique

(i.e., emptyset[T1] and emptyset[T2] are not identical)

I There are different set operations for each basic element
type. In other words, card[T1] is not the same function
as card[T2].
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Back to Big Warning

If you give PVS

below_100: TYPE = { n: nat | n <= 100 }

ll: LEMMA {t:below_100 | t = 50} = {n: nat | n = 50}

it will recognize the domain mismatch and interpret this as
|-------

{1} {t: below_100 | t = 50} = restrict({n: nat | n = 50})

where restrict is defined in the prelude as:

restrict [T: TYPE, S: TYPE FROM T, R: TYPE]: THEORY

BEGIN

f: VAR [T -> R]

s: VAR S

restrict(f)(s): R = f(s)

CONVERSION restrict

END restrict

This CONVERSION helps here, but will not help you when you try
something like ...
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Big Warning (cont’d)

below_100: TYPE = {n: nat | n <= 100}

lc: LEMMA card({t:below_100 | t = 50}) = card({n: nat | n = 50})

because this is really

lc: LEMMA card[below_100]({t:below_100 | t = 50})
= card[nat]({n: nat | n = 50})

Which are two different functions and therefore, they cannot
be equal.
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The Moral Of the Story

Define sets over the PARENT TYPE unless there is a very
good reason not to.

USE

{ n: nat | P(n) AND n <= 100 }

RATHER THAN

below_100: TYPE = { n: nat | n <= 100 }

{ t:below_100 | P(t) }

This will keep all the domains the same.



Collection Types

Jeffrey Maddalon

Ordered
Collections

Sequence

Bounded Array

Array Operations

Finite Sequences

Unordered
Collections

Sets

Proving with Sets

Sets in Type Theory

Choose

Finite Sets

Finite Set Operations

Bags

Choose Function

I The choose function returns an arbitrary element of a
nonempty set: choose(p: (nonempty?)): (p) = epsilon(p)

I An empty set will cause an unprovable TCC.

I If the set is potentially empty, one should use epsilon

directly.

I The function epsilon is defined as follows:

epsilons [T: NONEMPTY_TYPE]: THEORY

BEGIN

p: VAR pred[T]

x: VAR T

epsilon(p): T

epsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p))

I Given a set of type T, epsilon produces an element in the
set if one exists, and otherwise produces an arbitrary
element of the type.

I The parent type of the set must be nonempty.
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Choose Function: Additional Thoughts

I It would have been nice if choose had been defined
without a body:

choose(p: (nonempty?)): (p)

since all of the properties needed are implicit in the
return type.

I If the body were not present, choose would not expand
when using (GRIND) or (auto-rewrite-theory "sets[nat]")

Recommendation:

(AUTO-REWRITE-THEORY "sets[nat]" :exclude "choose")

(GRIND :exclude "choose")

(INSTALL-REWRITES :DEFS T :EXCLUDE "choose")
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Motivation For Finite Sets

We would like to have to following functions defined over
sets:

1. The cardinality function

2. Minimum and maximum over a set

3. Summation over a set

and the ability to perform set induction.
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Basic Definitions

Let’s define a predicate that indicates when a set is finite:

is_finite(S): bool = (EXISTS N, (f: [(S)->below[N]]): injective?(f))

where injective? is defined in the PVS prelude as follows:

functions [D, R: TYPE]: THEORY

f, g: VAR [D -> R]

x, x1, x2: VAR D

y: VAR R

injective?(f): bool = (FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))

surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))

bijective?(f): bool = injective?(f) & surjective?(f)

I To demonstrate that a set is finite, an injective function
from the set into [0,N] must be exhibited.

I The user is free to pick any N that is convenient and not
necessarily the smallest.
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The type finite set

finite_set: TYPE = (is_finite) CONTAINING emptyset[T]

A nonempty finite set is defined as follows:

non_empty_finite_set: TYPE = {s: finite_set | NOT empty?(s)}

The declaration of a finite set variable:

IMPORTING finite_sets

S: VAR finite_set[T]

I finite set is defined in the prelude.

I (is finite) is an abbreviation for the type
{t: setof[T] | is finite(t)}
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Finite Set Operations

I Because finite set is a subtype of set, all of the
operations on the set type are inherited by the finite set

type.

The set operations preserve finiteness:

A,B: VAR finite_sets

finite_union: LEMMA is_finite(union(A,B))

finite_intersection: LEMMA is_finite(intersection(A,B))

finite_difference: LEMMA is_finite(difference(A,B))

finite_add: LEMMA is_finite(add(x,A))

finite_remove: LEMMA is_finite(remove(x,A))

finite_subset: LEMMA subset?(S,A) IMPLIES is_finite(S)

finite_singleton: LEMMA is_finite(singleton(x))

finite_empty: LEMMA is_finite(emptyset[T])

finite_rest: LEMMA is_finite(rest(A))



Collection Types

Jeffrey Maddalon

Ordered
Collections

Sequence

Bounded Array

Array Operations

Finite Sequences

Unordered
Collections

Sets

Proving with Sets

Sets in Type Theory

Choose

Finite Sets

Finite Set Operations

Bags

Judgements for Finite Sets

The following judgement statements make the above facts
available to the typechecker:

nonempty_finite_is_nonempty: JUDGEMENT

non_empty_finite_set SUBTYPE_OF (nonempty?[T])

finite_singleton: JUDGEMENT singleton(x) HAS_TYPE finite_set

finite_union : JUDGEMENT union(A, B) HAS_TYPE finite_set

finite_intersec1: JUDGEMENT intersection(s, A) HAS_TYPE finite_set

finite_intersec2: JUDGEMENT intersection(A, s) HAS_TYPE finite_set

nonemp_fin_un1: JUDGEMENT union(NA, B) HAS_TYPE non_empty_finite_set

I The inclusion of these judgements in the library will
minimize the number of TCCs that are generated.

I Without the JUDGEMENT statements, every use of the basic
set operations on a finite set (e.g. add(x,S)) in a context
that requires a finite set, would result in the generation
of a TCC.
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Structure Of The Finite Sets Library

The library contains the following theories

finite sets : part of the prelude, not library (pro-
vides basic type and cardinality)

finite sets sum : summation over a set
finite sets minmax : min and max over a set
finite sets inductions : induction schemes
finite sets sum real : additional properties for summa-

tions over real-valued functions
finite sets int : special properties of integer sets
finite sets nat : special properties of natural sets

The library also contains theories card def, finite sets def,
and card lt which are not meant to be directly imported.
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Cardinality of a Finite Set

S: VAR finite_set[T]

inj_set(S): (nonempty?[nat]) =

{n | EXISTS (f: [(S)->below[n]]) : injective?(f) }

Card(S): nat = min(inj_set(S))

card(S): {n: nat| n = Card(S)} % inhibit expansion

I Cardinality is defined to be the smallest n for which an
injection exists.

I To inhibit expansion, the card function is defined using a
return type that is a singleton.

I The definition can be retrieved using a TYPEPRED

command (e.g. TYPEPRED "card(S!1)") or the card bij

theorem:

card_bij: THEOREM card(S) = N IFF

(EXISTS (f: [(S) -> below[N]]): bijective?(f))
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Properties of card Over the Set Operations

x: VAR T

S,A,B: VAR finite_set[T]

card_union : THEOREM card(union(A,B)) = card(A) + card(B) -

card(intersection(A,B))

card_add : THEOREM card(add(x,S)) =

card(S) + IF S(x) THEN 0 ELSE 1 ENDIF

card_remove: THEOREM card(remove(x,S)) =

card(S) - IF S(x) THEN 1 ELSE 0 ENDIF

card_subset: THEOREM subset?(A,B) IMPLIES card(A) <= card(B)

card_emptyset : THEOREM card(emptyset[T]) = 0

card_singleton: THEOREM card(singleton(x)) = 1

Most users of the library will only need to use these lemmas
and not the more fundamental definition of card.
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Minimum and Maximum of a Set
The finite sets library provides two functions min and max that
return the minimum and maximum elements of a set,
respectively.

SS: VAR non_empty_finite_set[T]

min(SS): {a:T | SS(a) AND (FORALL (x:T): SS(x) IMPLIES a <= x)}
max(SS): {a:T | SS(a) AND (FORALL (x:T): SS(x) IMPLIES x <= a)}

I These functions are not constructively defined, but are
merely constrained to return a value from a specified
set.

The following useful properties of min and max over the set
union operator are also provided:

A,B: VAR non_empty_finite_set

min_union: LEMMA min(A) = x AND min(B) = y IMPLIES

min(union(A,B)) = min(x,y)

max_union: LEMMA max(A) = x AND max(B) = y IMPLIES

max(union(A,B)) = max(x,y)
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Summation Over a Set
The library provides a summation operator, sum over a set:
finite_sets_sum[T, R: TYPE, zero:R, +:[R,R -> R] ]: THEORY

f: VAR [T -> R]

S: VAR finite_set[T]

x: VAR T

sum(S,f) : RECURSIVE R =

IF (empty?(S)) THEN zero

ELSE f(choose(S)) + sum(rest(S),f)

ENDIF MEASURE (LAMBDA S,f: card(S))

Many useful properties of sum are available, including:
x : VAR T

S,A,B: VAR finite_set

sum_empty: THEOREM sum(emptyset[T],f) = zero

sum_singleton: THEOREM sum(singleton(x),f) = f(x) + zero

sum_add: THEOREM sum(add(x,S),f)

= sum(S,f) + IF member(x,S) THEN zero ELSE f(x) ENDIF

sum_remove: THEOREM sum(remove(x,S),f)

+ IF member(x,S) THEN f(x) ELSE zero ENDIF = sum(S,f)
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Induction Schemes

The library provides several induction schemes over sets:

finite_sets_inductions[T: TYPE]: THEORY

S, S1, S2,s: VAR finite_set[T]

e: VAR T

p: VAR pred[finite_set[T]]

finite_set_ind_modified: THEOREM

(FORALL p: (p(emptyset[T]) AND

(FORALL e,S: NOT member(e,S) AND p(S) IMPLIES p(add(e,S))))

IMPLIES (FORALL S: p(S)))

finite_set_induction_gen: THEOREM

(FORALL p: (FORALL S:

(FORALL S2: card(S2) < card(S) IMPLIES p(S2))

IMPLIES p(S))

IMPLIES (FORALL S: p(S)))

Use these to prove a property p over a set S by

1. proving p(emptyset) and p(S) => p(add(e,S))

2. proving (FORALL S2: |S2| < |S| => p(S2)) => p(S)
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Bags (aka Multisets)

I Sets capture information about membership

I Bags capture information about quantity
bag: TYPE = [T -> nat]

I Located in the structures directory of the library

I Convert a bag to a set: bag to set

Some operations on bags:

emptybag : bag = (LAMBDA t: 0)

insert(x,b) : bag = (LAMBDA t: IF x = t THEN b(t) + 1 ELSE b(t) ENDIF)

purge(x,b) : bag = (LAMBDA t: IF x = t THEN 0 ELSE b(t) ENDIF)

extract(x,b) : bag = (LAMBDA t: IF x = t THEN b(t) ELSE 0 ENDIF)

plus(a,b) : bag = (LAMBDA t: a(t) + b(t))

union(a,b) : bag = (LAMBDA t: max(a(t),b(t)))

intersection(a,b): bag = (LAMBDA t: min(a(t),b(t)))


	Ordered Collections
	Sequence
	Bounded Array
	Array Operations
	Finite Sequences

	Unordered Collections
	Sets
	Proving with Sets
	Sets in Type Theory
	Choose
	Finite Sets
	Finite Set Operations
	Bags


